Efficient Discriminate Component Analysis using Support Vector Machine Classifier on Invariant Pose and Illumination Face Images

نویسنده

  • R. Rajalakshmi
چکیده

Face recognition is the process of categorizing a person in an image by evaluating with a known face image library. The pose and illumination variations are two main practical confronts for an automatic face recognition system. This study proposes a novel face recognition algorithm known as Efficient Discriminant Component Analysis (EDCA) for face recognition under varying poses and illumination conditions. This EDCA algorithm overcomes the high dimensionality problem in the feature space by extracting features from the low dimensional frequency band of the image. It combines the features of both LDA and PCA algorithms and these features are used in the training set and is classified using Support Vector Machine classifier. The experiments were performed on the CMU-PIE datasets. The experimental results show that the proposed algorithm produces a higher recognition rate than the existing LDA and PCA based face recognition techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Face Recognition system Based on Texture Gabor Features using PCA and Support Vector Machine as a Classifier

Pioneer 2D face recognition based on intensity or color images encounters many challenges, like variation in illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the main objective is to analyze what contributions depth and intensity with texture information make to the solution of face reco...

متن کامل

Multi-view Face Detection Based on Kernel Principal Component Analysis and Kernel Support Vector Techniques

Detecting faces across multiple views is more challenging than in a frontal view. To address this problem, an efficient approach is presented in this paper using a kernel machine based approach for learning such nonlinear mappings to provide effective view-based representation for multi-view face detection. In this paper Kernel Principal Component Analysis (KPCA) is used to project data into th...

متن کامل

Face Recognition with Support Vector Machines and 3D Head Models

We present a novel approach to view and pose invariant face recognition that combines two recent advances in the computer vision field: component-based recognition and 3D morphable models. In a first step a 3D morphable model is used to generate 3D face models from only two input images from each person in the training database. By rendering the 3D models under varying pose and illumination con...

متن کامل

Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Face images are subject to changes in view and illumination. Such changes cause data distribution to be highly nonlinear and complex in the image space. It is desirable to learn a nonlinear mapping from the image space to a low dimensional space such that the distribution becomes simpler, tighter and therefore more predictable for better modeling of faces. In this paper, we present a kernel mac...

متن کامل

Blur and Illumination Invariant Robust Face Recognition Using Support Vector Machine (svm)

Face recognition is the biometric identification by scanning a person's face and matching it against a library of known faces. The Issues in Face recognition include image degradation due to blur and variations in appearance due to illumination. Blur refers to the less sharpness or unclearness in images whereas Illumination refers to the placement of light sources in images. Our approach deals ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015